If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+20d-100=0
a = 1; b = 20; c = -100;
Δ = b2-4ac
Δ = 202-4·1·(-100)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{2}}{2*1}=\frac{-20-20\sqrt{2}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{2}}{2*1}=\frac{-20+20\sqrt{2}}{2} $
| X-12x+48=15 | | 2=r=7+6r | | 5(x+3)=3x-4 | | 5x+8/3x-8=3x/8 | | 5(4w+5)÷2=-3 | | -X^3+x+9=0 | | 3.5w-2.7=6 | | 8(x/2)=7x+2 | | 4(p-6)-8=12 | | -24+3k=6+2k | | 4n+3=2n-1+n | | 0.98^x=50 | | 22+2z=66 | | 0y+14=0 | | 2x^2−8+2x^2−2+x^2+10=180 | | ,∠A=2x^2−8+2x^2−2+x^2+10=180 | | 7x/5+3/2=x/5 | | 1-4+16-64=x | | x4+2x3+-14x2+2x+1=0 | | 0.6/y/1.25=0.24 | | 0.6/y=0.3 | | y/6+4y/3=6 | | 8x/3+16=3x/2-12x= | | 8x/3+16=3x/2-12 | | 8=9(p-2) | | 4x+17=6x-23 | | 3/n-1=0 | | 16^-x=1/64 | | 6n+8=56-2n | | f=3f+30 | | 1x/2+4=30 | | 2^2x-1=4^3x+2 |